Oil Flux Americas
Oil Flux Americas
Spanish Website Spanish Website


Products & Services

DEMULSIFIER

Demulsifier additive chemical breaks the crude oil emulsion into crude oil and water. Demulsifier additive breaks the water/oil emulsion by maintaining a strict hydrophilic-lipophilic balance (“HLB” scale).

Demulsifier additive chemical to oilfield water/oil emulsion alters the kinetic stability by changing the interfacial film encapsulating the water droplets allowing the coalescence of the water droplets separate from the crude oil. The result is demulsification of the crude oil mass by Demulsifier additive chemical.

Demulsification of the crude oil mass by Demulsifier additive chemical involves many different theories of physiochemical mechanisms. New chemistry has been developed by OilFlux™ for demulsification of the crude oil mass by Demulsifier additive chemical.

Demulsification can be achieved by Demulsifier additive chemical alone or in conjunction with mechanical processes such as agitation, temperature, pressure, electrostatic fields, or altering flow velocity. Demulsification by Demulsifier additive chemical must be carefully designed and used in accordance with crude oil API type, temperature, pH, brine composition, water droplet size and distribution, agitation, residency time, dosage and similar factors.

Demulsifier additive chemical efficacy is tested by the difference on water content according to ASTM D-95/13e1 method on a sample crude oil before and after testing.

OilFlux™ “SWO” demulsifier additive tested according to ASTM D-95/13e1 with a 0.5% dosage by crude oil volume resulted in a 62.5% reduction of water which achieved refinery specifications of less than 0.2% for basic sediment and water (“BS&W”) and 10 pounds of salt/1000 bbl of crude oil.
The test was performed by the world renowned independent laboratory, Intertek http://www.intertek.com/.


SWO

Demulsifier that separates the water from the "water/crude oil" emulsion.  ​For the elimination of water in flow stations.   It can be applied in refineries if the water content is over the admissible 0.2%.  (DEMULSIFIER)​

 

References

  1. Menon, V.B. and Wasan, D.T. 1987. Particle—fluid interactions with applications to solid-stabilized emulsions Part III. Asphaltene adsorption in the presence of quinaldine and 1,2-dimethylindole. Colloids Surf. 23 (4): 353-362. http://dx.doi.org/http://dx.doi.org/10.1016/0166-6622(87)80276-7.
  2. Kokal, S. and Al-Juraid, J. 1998. Reducing Emulsion Problems By Controlling Asphaltene Solubility and Precipitation. Presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 27-30 September 1998. SPE-48995-MS. http://dx.doi.org/10.2118/48995-MS.
  3. Bobra, M. 1990. A Study of the Formation of Water-in-Oil Emulsions. Proc., 1990 Arctic and Marine Oil Spill Program Technical Seminar, Edmonton, Canada.
  4. L.L. Schramm ed. 1992. Emulsions: Fundamentals and Applications in the Petroleum Industry, Advances in Chemistry Series No. 231. Washington, DC: American Chemical Society.
  5. H.B. Bradley ed. 1987. Petroleum Engineering Handbook, 19-26. Richardson, Texas: SPE.
  6. Kokal, S. and Wingrove, M. 2000. Emulsion Separation Index: From Laboratory to Field Case Studies. Presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, 1-4 October 2000. SPE-63165-MS. http://dx.doi.org/10.2118/63165-MS.
  7. Marquez-Silva, R.L., Key, S., Marino, J. et al. 1997. Chemical Dehydration: Correlations between Crude Oil, Associated Water and Demulsifier Characteristics, in Real Systems. Presented at the International Symposium on Oilfield Chemistry, Houston, Texas, 18-21 February 1997. SPE-37271-MS. http://dx.doi.org/10.2118/37271-MS.
  8. Berger, P.D., Hsu, C., and Arendell, J.P. 1988. Designing and Selecting Demulsifiers for Optimum Field Performance on the Basis of Production Fluid Characteristics. SPE Prod Eng 3 (4): 522- 526. SPE-16285-PA. http://dx.doi.org/10.2118/16285-PA.
  9. Aveyard, R., Binks, B.P., Fletcher, P.D.I. et al. 1990. The resolution of water-in-crude oil emulsions by the addition of low molar mass demulsifiers. J. Colloid Interface Sci. 139 (1): 128-138. http://dx.doi.org/http://dx.doi.org/10.1016/0021-9797(90)90450-3.
  10. Yang, M., Stewart, A.C., and Davies, G.A. 1996. Interactions Between Chemical Additives and Their Effects on Emulsion Separation. Presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 6-9 October 1996. SPE-36617-MS. http://dx.doi.org/10.2118/36617-MS.
  11. Strassner, J.E. 1968. Effect of pH on Interfacial Films and Stability of Crude Oil-Water Emulsions. J Pet Technol 20 (3): 303-312. SPE-1939-PA. http://dx.doi.org/10.2118/1939-PA.
  12. Salager, J.L. 1990. The Fundamental Basis for the Action of a Chemical Dehydrant: Influence of Physical and Chemical Formulation on the Stability of an Emulsion. Intl. Chemical Engineering 30 (1): 103.
  13. Sjöblom, J., Söderlund, H., Lindblad, S. et al. 1990. Water-in-crude oil emulsions from the Norwegian continental shelf. Colloid Polym. Sci. 268 (4): 389-398. http://dx.doi.org/10.1007/bf01411682.
  14. Schubert, H. and Armbroster, H. 1992. Principles of Formation and Stability of Emulsions. Intl. Chem. Eng. 32 (1): 14.
  15. Jones, T.J., Neustadter, E.L., and Whittingham, K.P. 1978. Water-In-Crude Oil Emulsion Stability And Emulsion Destabilization By Chemical Demulsifiers. J Can Pet Technol 17 (2). PETSOC-78-02-08. http://dx.doi.org/10.2118/78-02-08.
  16. Kokal, S. and Al-Juraid, J. 1999. Quantification of Various Factors Affecting Emulsion Stability: Watercut, Temperature, Shear, Asphaltene Content, Demulsifier Dosage and Mixing Different Crudes. Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 3-6 October 1999. SPE-56641-MS. http://dx.doi.org/10.2118/56641-MS.
  17. Mohammed, R.A., Bailey, A.I., Luckham, P.F. et al. 1994. Dewatering of crude oil emulsions 3. Emulsion resolution by chemical means. Colloids Surf., 83 (3): 261-271. http://dx.doi.org/http://dx.doi.org/10.1016/0927-7757(93)02706-K.
  18. Sjöblom, J., Urdahl, O., Høiland, H. et al. 1990. Water-in-crude oil emulsions. Formation, characterization, and destabilization. In Surfactants and Macromolecules: Self-Assembly at Interfaces and in Bulk, B. Lindman, J.B. Rosenholm, and P. Stenius, 82, 18, 131-139. Progress in Colloid & Polymer Science, Steinkopff. http://dx.doi.org/10.1007/BFb0118251.
  19. Krawczyk, M.A., Wasan, D.T., and Shetty, C. 1991. Chemical demulsification of petroleum emulsions using oil-soluble demulsifiers. Ind. Eng. Chem. Res. 30 (2): 367-375. http://dx.doi.org/10.1021/ie00050a014.
  20. Bhardwaj, A. and Hartland, S. 1994. Dynamics of Emulsification and Demulsification of Water in Crude Oil Emulsions. Ind. Eng. Chem. Res. 33 (5): 1271-1279. http://dx.doi.org/10.1021/ie00029a025.
  21. Manek, M.B. 1995. Asphaltene Dispersants as Demulsification Aids. Presented at the SPE International Symposium on Oilfield Chemistry, San Antonio, Texas, 14-17 February 1995. SPE-28972-MS. http://dx.doi.org/10.2118/28972-MS.
  22. Singh, B.P. 1994. Performance of Demulsifiers: Prediction Based on Film Pressure Area Isotherm and Solvent Properties. Energy Sources 16 (3): 377-385. http://dx.doi.org/10.1080/00908319408909084.
  23. Ajienka, J.A., Ogbe, N.O., and Ezeaniekwe, B.C. 1993. Measurement of dielectric constant of oilfield emulsions and its application to emulsion resolution. J. Pet. Sci. Eng. 9 (4): 331-339. http://dx.doi.org/http://dx.doi.org/10.1016/0920-4105(93)90063-K.
  24. http://petrowiki.org/Oil_demulsification 

Go to Top